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Axial point groups: rank 1, 2, 3 and 4 property
tensor tables
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The form of a physical property tensor of a quasi-one-dimensional material such

as a nanotube or a polymer is determined from the material’s axial point group.

Tables of the form of rank 1, 2, 3 and 4 property tensors are presented for a wide

variety of magnetic and non-magnetic tensor types invariant under each point

group in all 31 infinite series of axial point groups. An application of these tables

is given in the prediction of the net polarization and magnetic-field-induced

polarization in a one-dimensional longitudinal conical magnetic structure in

multiferroic hexaferrites.

1. Introduction

A considerable amount of literature exists on the derivation

and tabulation of the form of physical property tensors

invariant under non-magnetic crystallographic point groups

(Jahn, 1949; Nye, 1957; Wooster, 1973; Kopský, 1979a; Sirotin

& Shaskolskaya, 1982; Brandmüller & Winter, 1985; Litvin &

Litvin, 1990; and references contained in these sources) and

under magnetic crystallographic point groups (Sirotin, 1962;

Birss, 1964; Tenenbaum, 1966; Kopský, 1976, 1979b; Litvin &

Litvin, 1991; Authier, 2003; and references contained in these

sources). The symmetry of quasi-one-dimensional materials,

such as polymers (Vainshtein, 1966) and nanotubes (Damn-

janović & Milošević, 2010), is described by non-magnetic and

magnetic line groups (Hermann, 1928; Alexander, 1929;

Damnjanović & Vujičić, 1982). The point groups of these line

groups, called axial point groups, are the invariance groups of

the physical properties of such one-dimensional materials and

determine the form of the tensors representing their physical

properties.

The 31 families of non-magnetic and magnetic axial point-

group types (Damnjanović & Vujičić, 1981) are listed in Table

1. Each family consists of an infinite number of point groups.

These families of axial point groups are subdivided into three

subclasses: (i) families of groups G which do not contain the

time inversion operation 10, neither by itself nor coupled with

another element; (ii) families of groups G1000 which are direct

products of a group G of the first subclass and the group 1000 =

{1,10}; and (iii) families of groups G(H) = H + (G�H)10 where

H is a subgroup of index two of a group G of the first subclass

whose elements are not coupled with time inversion, and the

remaining elements of G, i.e. the elements in G � H, are

coupled with the time inversion.

2. Rank 1, 2, 3 and 4 property tensor tables

We have tabulated the form of 60 rank 1, 2, 3 and 4 property

tensor types invariant under each axial point group (the
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complete tables are available as supporting information).

These property tensors are defined in terms of the four types

of rank 0 property tensor types denoted by 1, e, a and ae.

These rank 0 tensors are defined in Table 2 by their trans-

formation properties under the action of spatial inversion 1

and time inversion 10. The rank 0 tensor given in the ith row of

the left-hand-side column transformed by the element in the

jth column of the top row is given at the intersection of the ith

row and jth column.

We list the 60 rank 1, 2, 3 and 4 property tensor types which

we consider in Table 3. These tensors are given in terms of a

rank 0 tensor and products of the polar vector tensor V. The

symbols [ ] and { }, as in [V2] and {V2}, denote the symme-

trization and anti-symmetrization, respectively, of the tensors

contained within the symbol. The Birss (1964) nomenclature

of the type of each tensor is given in the top row of each

column of tensors: tensors of rank n are called polar if they

transform under rotations and rotation–inversions as a

product of n vectors; and axial if an additional sign change

occurs for rotation–inversions. i and c tensors are, respectively,

invariant or change sign under time inversion 10.

The derivation of the form of a property tensor invariant

under a non-magnetic group first uses the fact that since non-

magnetic groups do not contain the time inversion operation,

the forms of a c polar tensor and a c axial tensor are,

respectively, identical with their corresponding i polar tensor

and i axial tensor. That is, for example, the forms of the

property tensors aV2 and aeV2, invariant under any non-

magnetic group, are identical, respectively, with the forms of

the property tensors V2 and eV2 invariant under the same non-

magnetic group. The form of i polar and i axial tensors

invariant under non-magnetic groups can almost always be

either directly found in the tables of Sirotin & Shaskolskaya

(1982), or by a coordinate transformation of a form found in

these tables (see the example below). There are cases when

the non-magnetic group is not one considered in these tables,

such as 8m2. The form of tensors invariant under such point

groups is derived using Neumann’s principle (Birss, 1964).

The derivation of the form of a property tensor invariant

under a magnetic group is done using the methodology of

Litvin (1994). It is shown there that the form of any property

tensor invariant under a magnetic group is the same as the

form of an i polar or i axial property tensor invariant under a

related non-magnetic group. For a given property tensor and
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Table 2
Transformation properties of rank 0 property tensors under spatial
inversion 1 and time inversion 10.

Transformation 1 1 10 10

1 1 1 1 1
Rank 0 e e �e e �e
Property tensor a a a �a �a

ae ae �ae �ae ae

Table 3
Tensor types of rank 1, 2, 3 and 4.

These tensors are denoted using Jahn notation (Jahn, 1949). ‘V’ represents a
three-dimensional polar vector and Vm = V � V � . . . � V the mth ranked
product of V. ‘e’ and ‘a’ are zero-rank tensors that change sign under spatial
inversion 1 and time inversion 10, respectively.

i polar i axial c polar c axial

Rank 1 V eV aV aeV

Rank 2 V2 eV2 aV2 aeV2

[V2] e[V2] a[V2] ae[V2]
{V2} e{V2} a{V2} ae{V2}

Rank 3 V3 eV3 aV3 aeV3

[V3] e[V3] a[V3] ae[V3]
V[V2] eV[V2] aV[V2] aeV[V2]
{V2}V e{V2}V a{V2}V ae{V2}V

Rank 4 V4 eV4 aV4 aeV4

[V4] e[V4] a[V4] ae[V4]
V[V3] eV[V3] aV[V3] aeV[V3]
[[V2]2] e[[V2]2] a[[V2]2] ae[[V2]2]
[V2]2 e[V2]2 a[V2]2 ae[V2]2

[(V2)]2 e[(V2)]2 a[(V2)]2 ae[(V2)]2

[V2]V2 e[V2]V2 a[V2]V2 ae[V2]V2

Table 1
Families of axial point-group types.

A symbol for each axial point-group family is given in the left-hand column. Cn

denotes the family of axial group types with n = 1, 2, 3, . . . of groups
generated by a rotation of 2�/n about an axis which we take as the z axis. �v is
a vertical mirror plane, a plane containing the z axis, �h a horizontal mirror
plane, perpendicular to the z axis, U a twofold rotation perpendicular to the z
axis, and Ud a twofold rotation perpendicular to the z axis and halfway
between neighboring vertical mirror planes. In the right-hand column is the
limiting group of each family of axial point groups.

Families of groups G: Limiting group
Cn C1
Cnv = Cn + �v Cn C1v = C1 + �v C1
S2n = Cn + (�hC2n) Cn C1h = C1 + �h C1
Cnh = Cn + �h Cn C1h = C1 + �h C1
Dn = Cn + U Cn D1 = C1 + U C1
Dnd = Cnv + Ud Cnv D1h = C1v + �h C1v

Dnh = Cnv + �h Cnv D1h = C1v + �h C1v

Families of groups G1000:
Cn10 = Cn + 10Cn C11000 = C1 + 10C1
Cnv10 = Cnv + 10Cnv C1v1000 = C1v + 10C1v

S2n10 = S2n + 10S2n C1h1000 = C1h + 10C1h

Cnh10 = Cnh + 10Cnh C1h1000 = C1h + 10C1h

Dn10 = Dn + 10Dn D11000 = D1 + 10D1
Dnd10 = Dnd + 10Dnd D1h1000 = D1h + 10D1h

Dnh10 = Dnh + 10Dnh D1h1000 = D1h + 10D1h

Families of groups G(H):
C2n(Cn) = Cn + C2n

0 Cn C11000 = C1 + 10C1
S2n(Cn) = Cn + (�hC2n)0 Cn C1h(C1) = C1 + �h

0 C1
Cnh(Cn) = Cn + �h

0 Cn C1h(C1) = C1 + �h
0 C1

C2nh(S2n) = S2n + �h
0 S2n C1h1000 = C1h + 10C1h

C2nh(Cnh) = Cnh + C2n
0 Cnh C1h1000 = C1h + 10C1h

Dn(Cn) = Cn + U0 Cn D1(C1) = C1 + U0 C1
D2n(Dn) = Dn + C2n

0 Dn D11000 = D1 + 10D1
Cnv(Cn) = Cn + �v

0 Cn C1v(C1) = C1 + �v
0 C1

C2nv(Cnv) = Cnv + C2n
0 Cnv C1v1000 = C1v + 10C1v

Dnd(S2n) = S2n + Ud
0 S2n D1h(C1h) = C1h + �v

0 C1h

Dnd(Dn) = Dn + �v
0 Dn D1h(D1) = D1 + �h

0 D1
Dnd(Cnv) = Cnv + Ud

0Cnv D1h(C1v) = C1v + �h
0 C1v

Dnh(Cnh) = Cnh + �v
0Cnh D1h(C1h) = C1h + �v

0 C1h

Dnh(Dn) = Dn + �h
0 Dn D1h(D1) = D1 + �h

0 D1
Dnh(Cnv) = Cnv + �h

0 Cnv D1h(C1v) = C1v + �h
0 C1v

D2nh(Dnd) = Dnd + C2n
0 Dnd D1h1000 = D1h + 10D1h

D2nh(Dnh) = Dnh + C2n
0 Dnh D1h1000 = D1h + 10D1h



magnetic group, the corresponding i polar or i axial property

tensor and related non-magnetic group are found, see the

example below, and then its form is determined as above.1

While each family of axial point groups contains an infinite

number of groups, for a specific tensor of rank m, one does not

have to tabulate the form of the tensor for each of the infinity

of groups in the family. This follows from the following

theorem (Hermann, 1934; Litvin, 2014):

The form of an mth rank physical property tensor invariant

under an axial point group which contains the subgroup Cn,

with n > m, is invariant under the limiting group of that axial

point-group family.

The limiting group of each axial point-group family, the

axial point group of that family as n goes to infinity, is given in

Table 1. Consequently, if one is to determine the form of an

mth rank tensor invariant under all axial point groups of a

specific family, one needs only to determine the form of the

tensor for those axial point groups with n = 1, 2, . . . , m and

n =1. The form of the tensor for all n > m is the same as for n

=1.

For example, consider the form of the piezo-

magnetic tensor, a tensor of the type aeV[V2],

invariant under the magnetic axial point groups of

the axial point-group family D2n(Dn). Since this is

a tensor of rank m = 3, one needs only to tabulate

the form of this tensor for the axial point groups

with n = 1, 2, 3 and 1. These piezomagnetic

tensors are given in Table 4. Since this tensor is

symmetric in the last two indices, i.e. aeV[V2]JKL =

aeV[V2]JLK, in tabulating this tensor we use the

following abbreviated tensor format (Sirotin &

Shaskolskaya, 1982):

xxx xyy xzz xyz xxz xxy

yxx yyy yzz yyz yxz yxy

zxx zyy zzz zyz zxz zxy

0
@

1
A:

For n = 1: the form of the property tensor

aeV[V2] invariant under D2(D1) = 2x2y2z(2y) =

2x
02y2z

0 is the same as the property tensor V[V2]

invariant under mxmz2y (Litvin, 1994). The form

of this property tensor invariant under mxmy2z is

found in Sirotin & Shaskolskaya (1982) and a

coordinate transformation gives the form under

mxmz2y (see Table 4).

For n = 2 and 3: the forms of the property tensor aeV[V2]

invariant under D4(D2) = 4z2x2xy(2x2y2z) = 4z
02x2xy

0 and

D6(D3) = 6z2x21(3z2x) = 6z
02x21

0 are the same as the property

tensor V[V2] invariant under, respectively, �44z2xmxy and �66z2xm1,

the forms of which can be found in Sirotin & Shaskolskaya

(1982) (see Table 4).

For n = 1: the form of the property tensor aeV[V2] invar-

iant under D110 =1 21000 is the null tensor since aeV[V2] is a c

tensor and the magnetic group contains the element 10 (see

Table 4).
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Table 4
Piezomagnetic tensors invariant under the axial point groups of the axial point-group
family D2n(Dn).

n = 1 D2(D1) = 2x2y2z(2y) = 2x
02y2z

0

0 0 0 0 0 xxy

yxx yyy yzz 0 0 0

0 0 0 zyz 0 0

0
@

1
A

n = 2 D4(D2) = 4z2x2xy(2x2y2z) = 4z
02x2xy

0

0 0 0 xyz 0 0

0 0 0 0 xyz 0

0 0 0 0 0 zxy

0
@

1
A

n = 3 D6(D3) = 6z2x21(3z2x) = 6z
02x21

0

xxx �xxx 0 0 0 0

0 0 0 0 0 �xxx

0 0 0 0 0 0

0
@

1
A

n =1 D11000 =1 210

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0
@

1
A

Figure 1
(a) The longitudinal conical magnetic structure in Sc-substituted barium
hexaferrite; the pitch of the helix is 150� and the half cone angle 30�. (b)
A polarization P can be induced by applying a magnetic field H in the Y–
Z plane.

1 The tables presented in this paper were not computer generated. They were
systematically checked and compared to existing tabulations: rank 2 and 3
property tensors of axial point groups which are non-magnetic and magnetic
crystallographic point groups were compared with and agree with the results
of Litvin & Litvin (1991). Rank 2 property tensors of axial point groups which
are non-magnetic crystallographic point groups were also compared with and
agree with the results of Damnjanović et al. (1999). In Table 5.5 of
Damnjanović & Milošević (2010) we find that their n = 2 case of the groups
Cnv, the point group 2zmxmy, the symmetric polar (in Birss nomenclature)
second-rank tensor [V2] does not agree with these tables nor with those of
Sirotin & Shaskolskaya (1982).



3. Magnetoelectric effect in multiferroic hexaferrites

The longitudinal conical magnetic structure in Sc-substituted

barium hexaferrite BaFe12�xScxO19, with x = 1.8 (Aleshko-

Ozhevskii et al., 1968, 1969), is shown in Fig. 1(a). The pitch of

the helix is 150� and the half cone angle 30�. According to the

inverse Dzyaloshinskii–Moriya model, the structure in Fig.

1(a) has no net polarization, but a polarization can be induced

by tilting the cone axis with the use of a magnetic field

(Tokunaga et al., 2010). This is shown in Fig. 1(b) where a

magnetic field in the Y–Z plane induces, as predicted by the

inverse Dzyaloshinskii–Moriya model, a polarization in the X

direction. These results, no net polarization in Fig. 1(a) and the

magnetic-field-induced polarization in the X direction, can be

predicted by considering the axial point-group symmetry of

the longitudinal conical magnetic structure in Fig. 1(a) and the

form of the polarization and magnetoelectric effect tensors

invariant under this point group.

The magnetic structure in Fig. 1(a) is invariant under the

translational symmetry element (RZ
5=12 |001), where RZ

5=12 is a

rotation of 150� about the z axis. In addition (see Fig. 2), the

point group of this magnetic structure contains a symmetry 20,

a twofold rotation perpendicular to the z axis coupled with

time inversion. Consequently, the axial point group of this

structure is C12 + 20C12 = D12(C12). With the axial point group

D12(C12), a point group Dn(Cn) with n = 12, polarization, a

rank m = 1 tensor of the type eV, and the magnetoelectric

tensor, of rank m = 2 tensor of the type aeV2, we have for both

property tensors n > m. Consequently, the form of the polar-

ization and magnetoelectric tensors invariant under D12(C12)

is that of the tensors invariant under D1 (C1). From the axial

point-group property tables we find for the point group

D1(C1) that a tensor of the type eV vanishes and therefore

there is no net polarization in the longitudinal conical

magnetic structure in Fig. 1(a). We also have that a tensor of

the type aeV2, the magnetoelectric tensor, is

0 �xy 0

��xy 0 0

0 0 0

0
@

1
A:

Consequently, for a magnetic field in the Y–Z plane one would

then predict a polarization in the X direction given by Px =

�xyHy.
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Figure 2
The longitudinal conical magnetic structure showing each cone as it would be viewed looking down the z axis in Fig. 1(a). The orientation of the spin of
each cone is related to the orientation of its neighbor by a rotation of 150� about the z axis. The twofold rotation around the x axis at the origin shown
coupled with time inversion is a symmetry of the magnetic structure.
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